
Calcium Decline, Impacts, and 
Potential Mitigation Efforts in 

Kawagama Lake
Calcium is an essential nutrient vital for physiological and structural processes 
of living species¹. Within the past decade, calcium decline has emerged as a 
stressor for softwater lakes across North America and Europe. Calcium decline 
is a legacy of long-term acid deposition and can be further exacerbated by 
timber harvesting and subsequent forest regrowth¹. Adverse ecological impacts 
of calcium loss such as extirpation of calcium-rich keystone species, dominance 
of calcium-poor competitors, food web changes, and increased algal blooms 
have been reported². Potential mitigation strategies include catchment-based 
forest management plans, use of wood ash and lime in forests, application of 
dust suppressants and in-stream liming. This booklet describes the calcium 
status in Kawagama Lake in Ontario, Canada, and discusses potential biological 
impacts and mitigation efforts. 
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Calcium Levels of Kawagama Lake from 1990 to 2016
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Kawagama Lake has naturally low calcium levels because it is located on the 
Pre-Cambrian Shield, a geological region characterized by weather-resistant bedrock 
and shallow, low-calcium soils3.

In an undisturbed ecosystem, calcium outputs are balanced by inputs in the calcium 
cycle. Lake calcium is controlled by the amount of calcium available in soils and how 
rapidly it is leached from and replenished in the soil1. Ca inputs Ca outputs

Where Does Calcium in Lakes Come From?

Normal (> 2.0 mg/L) Vulnerable (1.5 – 2.0 mg/L) Stressed (< 1.5 mg/L)

Calcium concentrations in Kawagama 
Lake have been in decline since the 1990s4. 
Currently, the average concentration of 
1.80 mg/L falls wthin the vulnerable 
category for calcium biosensitive biota2.

This suggests a need for close monitoring 
and potential mitigation action, as severe 
effects on keystone aquatic species have 
been observed in lakes with concentrations 
below the critical level range of 1.5–2.0 mg/L2.  
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Causes of Calcium Decline
The main mechanisms attributed to the depletion of calcium from soil pools and changes 
in lake calcium concentrations are elevated rates of calcium leaching caused by decades of 
acidic deposition combined with forest harvesting and the subsequent re-growth of forests1. 

Reason #1: Acid Rain

Leaching rate: HIGH
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Leaching rate: LOW

In the mid-twentieth century, acid rain caused by industrial activity 
accelerated calcium leaching from soils and led to a period of 
increased calcium concentrations in lakes5.

Over time, the pool of available calcium in the soil 
was depleted, as the leaching rate exceeded the 
low calcium replenishment rate from bedrock5. 

Air pollution policies since the 1970s have successfully decreased acid rain, 
therefore, even less calcium was leached from residual soil calcium pools, 
which contributes to observed calcium declines in the lake5.
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Reason #2: Tree Harvesting

No Harvesting Scenario: Harvesting Scenario:
Size of soil calcium pool and lake calcium 
remain the same.

Soil calcium pool shrinks over time, thus less 
calcium is available for leaching into the lake 
and as a result, lakewater calcium declines.
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Over 60% of calcium in 
   trees can be found in 
     bark and stemwood6.
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longer available to
replenish soil calcium 
pools7.
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Why is Calcium Important?
Calcium is an essential nutrient required in large quantities by 
terrestrial and aquatic biota2. Species vary in their calcium 
requirements, and as calcium concentrations decrease, species such 
as sugar maple and crayfish can become unhealthy and die. In the 
past, calcium concentrations have been higher and have maintained 
species diversity in both terrestrial and aquatic environments. Further 
declines of calcium can affect components within the ecosystem.

Ca

As calcium concentrations decrease, sugar maple trees experience slower growth and 
become more vulnerable to pathogens and drought events, and eventually suffer 
from declining overall health8. Sugar maples will be replaced by  lower calcium 
demand species such as the American beech.
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Impacts on Terrestrial Environment

Impacts on Aquatic Environment

As calcium declines over time
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As calcium concentrations fall, calcium-rich species such as crayfish and Daphnia 
begin to struggle to establish and thrive, whereas the invasive species known as the 
spiny waterflea will successfully establish as its population density will increase with 
the lack of calcium present9.
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Potential Mitigation Efforts

Catchment based forest management plans are longer 
term efforts, typically twenty year plans in the Muskoka 
River Watershed9. Leaving the bark, branches, and foliage 
on site help minimise soil calcium loss as the bark is 
calcium rich, while the foliage and branches are generally 
not of great use to industries. This would help retain 
calcium in the catchment and facilitate overall calcium 
replenishment9.

Wood ash and lime application have been found to 
improve soil calcium concentrations when 4-8 metric 
tonnes of wood ash or lime are applied after harvesting9. 
Application at riparian zones may assist in increasing lake 
calcium concentrations due to greater calcium transfer 
from the soil to the lake aided by hydrological connectivity. 

Dust suppressant application on unpaved roads in the 
forest near the lakeshore occurs several times over the 
summer months. While this has been a primary method for 
slowing the process of calcium loss, some lakes have 
experienced an increase in calcium concentrations over a 
short period of time10.

Direct addition of lime to the stream or lake will result in the 
rapid increase of calcium concentrations in surface waters. 
Although it is the most expensive form of mitigation,  
in-stream liming can be used for short-term recovery of lakes 
with critically low calcium concentrations (e.g. Sudbury 
lakes) to potentially prevent short-term loss of species11.
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1. Catchment-based forest management

i) Wood ash and/or lime application

ii) Dust suppressant application

iii) In-stream liming

2. Supplementing calcium in the watershed 

Below are four mitigation strategies that have the potential to increase calcium 
concentrations in Kawagama Lake.

Comparison of Methods

5Shorter term impactp

Quicker results

Increasing cost 
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Calcium concentrations are falling in Kawagama Lake and other waterbodies in the 
surrounding watershed. It is important to understand both the background of 
calcium decline and the interactions between aquatic and terrestrial environments 
before selecting a method for mitigation. 

Conclusion
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